Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

PROPER(from(X)) → FROM(proper(X))
ACTIVE(from(X)) → FROM(s(X))
FILTER(mark(X1), X2) → FILTER(X1, X2)
ACTIVE(divides(X1, X2)) → ACTIVE(X2)
PROPER(filter(X1, X2)) → PROPER(X2)
ACTIVE(divides(X1, X2)) → ACTIVE(X1)
ACTIVE(from(X)) → FROM(active(X))
PROPER(divides(X1, X2)) → PROPER(X2)
PROPER(head(X)) → PROPER(X)
S(mark(X)) → S(X)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → DIVIDES(s(s(X)), Y)
ACTIVE(if(X1, X2, X3)) → IF(active(X1), X2, X3)
PROPER(divides(X1, X2)) → DIVIDES(proper(X1), proper(X2))
ACTIVE(sieve(cons(X, Y))) → CONS(X, filter(X, sieve(Y)))
TOP(mark(X)) → TOP(proper(X))
ACTIVE(tail(X)) → TAIL(active(X))
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
HEAD(mark(X)) → HEAD(X)
ACTIVE(filter(X1, X2)) → FILTER(active(X1), X2)
FROM(mark(X)) → FROM(X)
PROPER(cons(X1, X2)) → PROPER(X1)
ACTIVE(divides(X1, X2)) → DIVIDES(X1, active(X2))
PROPER(tail(X)) → PROPER(X)
TOP(ok(X)) → ACTIVE(X)
DIVIDES(ok(X1), ok(X2)) → DIVIDES(X1, X2)
ACTIVE(s(X)) → S(active(X))
PROPER(divides(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(tail(X)) → TAIL(proper(X))
ACTIVE(primes) → S(s(0))
ACTIVE(filter(s(s(X)), cons(Y, Z))) → SIEVE(Y)
ACTIVE(divides(X1, X2)) → DIVIDES(active(X1), X2)
DIVIDES(mark(X1), X2) → DIVIDES(X1, X2)
ACTIVE(primes) → S(0)
HEAD(ok(X)) → HEAD(X)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(sieve(X)) → SIEVE(active(X))
TOP(mark(X)) → PROPER(X)
FILTER(X1, mark(X2)) → FILTER(X1, X2)
TAIL(ok(X)) → TAIL(X)
PROPER(filter(X1, X2)) → PROPER(X1)
PROPER(if(X1, X2, X3)) → PROPER(X1)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → CONS(Y, filter(X, sieve(Y)))
ACTIVE(primes) → SIEVE(from(s(s(0))))
DIVIDES(X1, mark(X2)) → DIVIDES(X1, X2)
IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)
ACTIVE(sieve(cons(X, Y))) → SIEVE(Y)
ACTIVE(head(X)) → ACTIVE(X)
PROPER(if(X1, X2, X3)) → IF(proper(X1), proper(X2), proper(X3))
PROPER(sieve(X)) → SIEVE(proper(X))
ACTIVE(filter(X1, X2)) → ACTIVE(X1)
PROPER(filter(X1, X2)) → FILTER(proper(X1), proper(X2))
PROPER(if(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → S(proper(X))
ACTIVE(filter(X1, X2)) → ACTIVE(X2)
PROPER(sieve(X)) → PROPER(X)
S(ok(X)) → S(X)
ACTIVE(head(X)) → HEAD(active(X))
ACTIVE(s(X)) → ACTIVE(X)
SIEVE(ok(X)) → SIEVE(X)
ACTIVE(filter(X1, X2)) → FILTER(X1, active(X2))
PROPER(if(X1, X2, X3)) → PROPER(X2)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → IF(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
ACTIVE(from(X)) → CONS(X, from(s(X)))
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
TAIL(mark(X)) → TAIL(X)
PROPER(head(X)) → HEAD(proper(X))
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
SIEVE(mark(X)) → SIEVE(X)
FILTER(ok(X1), ok(X2)) → FILTER(X1, X2)
ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(sieve(cons(X, Y))) → FILTER(X, sieve(Y))
ACTIVE(from(X)) → S(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
TOP(ok(X)) → TOP(active(X))
PROPER(from(X)) → PROPER(X)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → FILTER(s(s(X)), Z)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → FILTER(X, sieve(Y))
FROM(ok(X)) → FROM(X)
ACTIVE(primes) → FROM(s(s(0)))

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

PROPER(from(X)) → FROM(proper(X))
ACTIVE(from(X)) → FROM(s(X))
FILTER(mark(X1), X2) → FILTER(X1, X2)
ACTIVE(divides(X1, X2)) → ACTIVE(X2)
PROPER(filter(X1, X2)) → PROPER(X2)
ACTIVE(divides(X1, X2)) → ACTIVE(X1)
ACTIVE(from(X)) → FROM(active(X))
PROPER(divides(X1, X2)) → PROPER(X2)
PROPER(head(X)) → PROPER(X)
S(mark(X)) → S(X)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → DIVIDES(s(s(X)), Y)
ACTIVE(if(X1, X2, X3)) → IF(active(X1), X2, X3)
PROPER(divides(X1, X2)) → DIVIDES(proper(X1), proper(X2))
ACTIVE(sieve(cons(X, Y))) → CONS(X, filter(X, sieve(Y)))
TOP(mark(X)) → TOP(proper(X))
ACTIVE(tail(X)) → TAIL(active(X))
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
HEAD(mark(X)) → HEAD(X)
ACTIVE(filter(X1, X2)) → FILTER(active(X1), X2)
FROM(mark(X)) → FROM(X)
PROPER(cons(X1, X2)) → PROPER(X1)
ACTIVE(divides(X1, X2)) → DIVIDES(X1, active(X2))
PROPER(tail(X)) → PROPER(X)
TOP(ok(X)) → ACTIVE(X)
DIVIDES(ok(X1), ok(X2)) → DIVIDES(X1, X2)
ACTIVE(s(X)) → S(active(X))
PROPER(divides(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(tail(X)) → TAIL(proper(X))
ACTIVE(primes) → S(s(0))
ACTIVE(filter(s(s(X)), cons(Y, Z))) → SIEVE(Y)
ACTIVE(divides(X1, X2)) → DIVIDES(active(X1), X2)
DIVIDES(mark(X1), X2) → DIVIDES(X1, X2)
ACTIVE(primes) → S(0)
HEAD(ok(X)) → HEAD(X)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(sieve(X)) → SIEVE(active(X))
TOP(mark(X)) → PROPER(X)
FILTER(X1, mark(X2)) → FILTER(X1, X2)
TAIL(ok(X)) → TAIL(X)
PROPER(filter(X1, X2)) → PROPER(X1)
PROPER(if(X1, X2, X3)) → PROPER(X1)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → CONS(Y, filter(X, sieve(Y)))
ACTIVE(primes) → SIEVE(from(s(s(0))))
DIVIDES(X1, mark(X2)) → DIVIDES(X1, X2)
IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)
ACTIVE(sieve(cons(X, Y))) → SIEVE(Y)
ACTIVE(head(X)) → ACTIVE(X)
PROPER(if(X1, X2, X3)) → IF(proper(X1), proper(X2), proper(X3))
PROPER(sieve(X)) → SIEVE(proper(X))
ACTIVE(filter(X1, X2)) → ACTIVE(X1)
PROPER(filter(X1, X2)) → FILTER(proper(X1), proper(X2))
PROPER(if(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → S(proper(X))
ACTIVE(filter(X1, X2)) → ACTIVE(X2)
PROPER(sieve(X)) → PROPER(X)
S(ok(X)) → S(X)
ACTIVE(head(X)) → HEAD(active(X))
ACTIVE(s(X)) → ACTIVE(X)
SIEVE(ok(X)) → SIEVE(X)
ACTIVE(filter(X1, X2)) → FILTER(X1, active(X2))
PROPER(if(X1, X2, X3)) → PROPER(X2)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → IF(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
ACTIVE(from(X)) → CONS(X, from(s(X)))
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
TAIL(mark(X)) → TAIL(X)
PROPER(head(X)) → HEAD(proper(X))
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
SIEVE(mark(X)) → SIEVE(X)
FILTER(ok(X1), ok(X2)) → FILTER(X1, X2)
ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(sieve(cons(X, Y))) → FILTER(X, sieve(Y))
ACTIVE(from(X)) → S(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
TOP(ok(X)) → TOP(active(X))
PROPER(from(X)) → PROPER(X)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → FILTER(s(s(X)), Z)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → FILTER(X, sieve(Y))
FROM(ok(X)) → FROM(X)
ACTIVE(primes) → FROM(s(s(0)))

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(from(X)) → FROM(s(X))
PROPER(from(X)) → FROM(proper(X))
FILTER(mark(X1), X2) → FILTER(X1, X2)
ACTIVE(divides(X1, X2)) → ACTIVE(X2)
PROPER(filter(X1, X2)) → PROPER(X2)
ACTIVE(divides(X1, X2)) → ACTIVE(X1)
ACTIVE(from(X)) → FROM(active(X))
PROPER(head(X)) → PROPER(X)
PROPER(divides(X1, X2)) → PROPER(X2)
S(mark(X)) → S(X)
ACTIVE(if(X1, X2, X3)) → IF(active(X1), X2, X3)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → DIVIDES(s(s(X)), Y)
PROPER(divides(X1, X2)) → DIVIDES(proper(X1), proper(X2))
ACTIVE(sieve(cons(X, Y))) → CONS(X, filter(X, sieve(Y)))
TOP(mark(X)) → TOP(proper(X))
ACTIVE(tail(X)) → TAIL(active(X))
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
HEAD(mark(X)) → HEAD(X)
ACTIVE(filter(X1, X2)) → FILTER(active(X1), X2)
FROM(mark(X)) → FROM(X)
PROPER(cons(X1, X2)) → PROPER(X1)
ACTIVE(divides(X1, X2)) → DIVIDES(X1, active(X2))
PROPER(tail(X)) → PROPER(X)
TOP(ok(X)) → ACTIVE(X)
DIVIDES(ok(X1), ok(X2)) → DIVIDES(X1, X2)
ACTIVE(s(X)) → S(active(X))
PROPER(divides(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(tail(X)) → TAIL(proper(X))
ACTIVE(divides(X1, X2)) → DIVIDES(active(X1), X2)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → SIEVE(Y)
ACTIVE(primes) → S(s(0))
DIVIDES(mark(X1), X2) → DIVIDES(X1, X2)
ACTIVE(primes) → S(0)
ACTIVE(tail(X)) → ACTIVE(X)
HEAD(ok(X)) → HEAD(X)
ACTIVE(sieve(X)) → SIEVE(active(X))
FILTER(X1, mark(X2)) → FILTER(X1, X2)
TOP(mark(X)) → PROPER(X)
TAIL(ok(X)) → TAIL(X)
PROPER(filter(X1, X2)) → PROPER(X1)
PROPER(if(X1, X2, X3)) → PROPER(X1)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → CONS(Y, filter(X, sieve(Y)))
DIVIDES(X1, mark(X2)) → DIVIDES(X1, X2)
ACTIVE(primes) → SIEVE(from(s(s(0))))
IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(sieve(cons(X, Y))) → SIEVE(Y)
ACTIVE(filter(X1, X2)) → ACTIVE(X1)
PROPER(sieve(X)) → SIEVE(proper(X))
PROPER(if(X1, X2, X3)) → IF(proper(X1), proper(X2), proper(X3))
PROPER(filter(X1, X2)) → FILTER(proper(X1), proper(X2))
PROPER(s(X)) → S(proper(X))
PROPER(if(X1, X2, X3)) → PROPER(X3)
ACTIVE(filter(X1, X2)) → ACTIVE(X2)
PROPER(sieve(X)) → PROPER(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(head(X)) → HEAD(active(X))
S(ok(X)) → S(X)
ACTIVE(filter(X1, X2)) → FILTER(X1, active(X2))
SIEVE(ok(X)) → SIEVE(X)
PROPER(if(X1, X2, X3)) → PROPER(X2)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → IF(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(from(X)) → CONS(X, from(s(X)))
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
TAIL(mark(X)) → TAIL(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
PROPER(head(X)) → HEAD(proper(X))
SIEVE(mark(X)) → SIEVE(X)
ACTIVE(sieve(cons(X, Y))) → FILTER(X, sieve(Y))
ACTIVE(sieve(X)) → ACTIVE(X)
FILTER(ok(X1), ok(X2)) → FILTER(X1, X2)
ACTIVE(from(X)) → S(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
PROPER(from(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
PROPER(cons(X1, X2)) → PROPER(X2)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → FILTER(s(s(X)), Z)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → FILTER(X, sieve(Y))
ACTIVE(from(X)) → ACTIVE(X)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
FROM(ok(X)) → FROM(X)
ACTIVE(primes) → FROM(s(s(0)))

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 12 SCCs with 38 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DIVIDES(mark(X1), X2) → DIVIDES(X1, X2)
DIVIDES(X1, mark(X2)) → DIVIDES(X1, X2)
DIVIDES(ok(X1), ok(X2)) → DIVIDES(X1, X2)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


DIVIDES(X1, mark(X2)) → DIVIDES(X1, X2)
The remaining pairs can at least be oriented weakly.

DIVIDES(mark(X1), X2) → DIVIDES(X1, X2)
DIVIDES(ok(X1), ok(X2)) → DIVIDES(X1, X2)
Used ordering: Combined order from the following AFS and order.
DIVIDES(x1, x2)  =  DIVIDES(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[DIVIDES1, mark1]

Status:
DIVIDES1: multiset
mark1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DIVIDES(mark(X1), X2) → DIVIDES(X1, X2)
DIVIDES(ok(X1), ok(X2)) → DIVIDES(X1, X2)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


DIVIDES(mark(X1), X2) → DIVIDES(X1, X2)
The remaining pairs can at least be oriented weakly.

DIVIDES(ok(X1), ok(X2)) → DIVIDES(X1, X2)
Used ordering: Combined order from the following AFS and order.
DIVIDES(x1, x2)  =  DIVIDES(x1, x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
mark1 > DIVIDES2

Status:
mark1: [1]
DIVIDES2: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DIVIDES(ok(X1), ok(X2)) → DIVIDES(X1, X2)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


DIVIDES(ok(X1), ok(X2)) → DIVIDES(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
DIVIDES(x1, x2)  =  DIVIDES(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [2].
Quasi-Precedence:
[DIVIDES1, ok1]

Status:
DIVIDES1: multiset
ok1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FILTER(ok(X1), ok(X2)) → FILTER(X1, X2)
FILTER(mark(X1), X2) → FILTER(X1, X2)
FILTER(X1, mark(X2)) → FILTER(X1, X2)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FILTER(ok(X1), ok(X2)) → FILTER(X1, X2)
The remaining pairs can at least be oriented weakly.

FILTER(mark(X1), X2) → FILTER(X1, X2)
FILTER(X1, mark(X2)) → FILTER(X1, X2)
Used ordering: Combined order from the following AFS and order.
FILTER(x1, x2)  =  FILTER(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[FILTER1, ok1]

Status:
FILTER1: multiset
ok1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FILTER(mark(X1), X2) → FILTER(X1, X2)
FILTER(X1, mark(X2)) → FILTER(X1, X2)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FILTER(X1, mark(X2)) → FILTER(X1, X2)
The remaining pairs can at least be oriented weakly.

FILTER(mark(X1), X2) → FILTER(X1, X2)
Used ordering: Combined order from the following AFS and order.
FILTER(x1, x2)  =  x2
mark(x1)  =  mark(x1)

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FILTER(mark(X1), X2) → FILTER(X1, X2)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FILTER(mark(X1), X2) → FILTER(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
FILTER(x1, x2)  =  FILTER(x1, x2)
mark(x1)  =  mark(x1)

Recursive path order with status [2].
Quasi-Precedence:
[FILTER2, mark1]

Status:
FILTER2: multiset
mark1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF(mark(X1), X2, X3) → IF(X1, X2, X3)
IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


IF(mark(X1), X2, X3) → IF(X1, X2, X3)
The remaining pairs can at least be oriented weakly.

IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)
Used ordering: Combined order from the following AFS and order.
IF(x1, x2, x3)  =  IF(x1, x2, x3)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
mark1 > IF3

Status:
mark1: [1]
IF3: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
IF(x1, x2, x3)  =  x2
ok(x1)  =  ok(x1)

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
ok1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TAIL(mark(X)) → TAIL(X)
TAIL(ok(X)) → TAIL(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


TAIL(mark(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.

TAIL(ok(X)) → TAIL(X)
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  TAIL(x1)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[TAIL1, mark1]

Status:
mark1: multiset
TAIL1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TAIL(ok(X)) → TAIL(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


TAIL(ok(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  TAIL(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [2].
Quasi-Precedence:
[TAIL1, ok1]

Status:
TAIL1: multiset
ok1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

HEAD(ok(X)) → HEAD(X)
HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


HEAD(ok(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.

HEAD(mark(X)) → HEAD(X)
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  HEAD(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[HEAD1, ok1]

Status:
ok1: multiset
HEAD1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


HEAD(mark(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  HEAD(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [2].
Quasi-Precedence:
[HEAD1, mark1]

Status:
mark1: multiset
HEAD1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1, x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
mark1 > CONS2

Status:
mark1: [1]
CONS2: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [2].
Quasi-Precedence:
[CONS1, ok1]

Status:
CONS1: multiset
ok1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.

S(mark(X)) → S(X)
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[S1, ok1]

Status:
ok1: multiset
S1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [2].
Quasi-Precedence:
[S1, mark1]

Status:
mark1: multiset
S1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FROM(mark(X)) → FROM(X)
FROM(ok(X)) → FROM(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FROM(mark(X)) → FROM(X)
The remaining pairs can at least be oriented weakly.

FROM(ok(X)) → FROM(X)
Used ordering: Combined order from the following AFS and order.
FROM(x1)  =  FROM(x1)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[FROM1, mark1]

Status:
mark1: multiset
FROM1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FROM(ok(X)) → FROM(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FROM(ok(X)) → FROM(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
FROM(x1)  =  FROM(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [2].
Quasi-Precedence:
[FROM1, ok1]

Status:
ok1: multiset
FROM1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SIEVE(mark(X)) → SIEVE(X)
SIEVE(ok(X)) → SIEVE(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SIEVE(mark(X)) → SIEVE(X)
The remaining pairs can at least be oriented weakly.

SIEVE(ok(X)) → SIEVE(X)
Used ordering: Combined order from the following AFS and order.
SIEVE(x1)  =  SIEVE(x1)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[SIEVE1, mark1]

Status:
mark1: multiset
SIEVE1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SIEVE(ok(X)) → SIEVE(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SIEVE(ok(X)) → SIEVE(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
SIEVE(x1)  =  SIEVE(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [2].
Quasi-Precedence:
[SIEVE1, ok1]

Status:
SIEVE1: multiset
ok1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(filter(X1, X2)) → PROPER(X2)
PROPER(filter(X1, X2)) → PROPER(X1)
PROPER(tail(X)) → PROPER(X)
PROPER(if(X1, X2, X3)) → PROPER(X1)
PROPER(divides(X1, X2)) → PROPER(X2)
PROPER(head(X)) → PROPER(X)
PROPER(divides(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(from(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(if(X1, X2, X3)) → PROPER(X3)
PROPER(sieve(X)) → PROPER(X)
PROPER(if(X1, X2, X3)) → PROPER(X2)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(filter(X1, X2)) → PROPER(X2)
PROPER(filter(X1, X2)) → PROPER(X1)
PROPER(if(X1, X2, X3)) → PROPER(X1)
PROPER(divides(X1, X2)) → PROPER(X2)
PROPER(divides(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(if(X1, X2, X3)) → PROPER(X3)
PROPER(if(X1, X2, X3)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.

PROPER(tail(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(from(X)) → PROPER(X)
PROPER(sieve(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
cons(x1, x2)  =  cons(x1, x2)
filter(x1, x2)  =  filter(x1, x2)
tail(x1)  =  x1
if(x1, x2, x3)  =  if(x1, x2, x3)
divides(x1, x2)  =  divides(x1, x2)
head(x1)  =  x1
s(x1)  =  x1
from(x1)  =  x1
sieve(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
cons2 > [PROPER1, if3, divides2]

Status:
if3: multiset
filter2: multiset
PROPER1: multiset
divides2: multiset
cons2: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)
PROPER(from(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
PROPER(sieve(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(s(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.

PROPER(from(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
PROPER(sieve(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
s(x1)  =  s(x1)
from(x1)  =  x1
tail(x1)  =  x1
sieve(x1)  =  x1
head(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[PROPER1, s1]

Status:
PROPER1: multiset
s1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(from(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
PROPER(sieve(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(sieve(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.

PROPER(from(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
from(x1)  =  x1
tail(x1)  =  x1
sieve(x1)  =  sieve(x1)
head(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[PROPER1, sieve1]

Status:
sieve1: multiset
PROPER1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(from(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(from(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.

PROPER(tail(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
from(x1)  =  from(x1)
tail(x1)  =  x1
head(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[PROPER1, from1]

Status:
from1: multiset
PROPER1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(tail(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(tail(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.

PROPER(head(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
tail(x1)  =  tail(x1)
head(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[PROPER1, tail1]

Status:
PROPER1: multiset
tail1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
QDP
                                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(head(X)) → PROPER(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(head(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
head(x1)  =  head(x1)

Recursive path order with status [2].
Quasi-Precedence:
[PROPER1, head1]

Status:
PROPER1: multiset
head1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
                                  ↳ QDP
                                    ↳ QDPOrderProof
QDP
                                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(filter(X1, X2)) → ACTIVE(X1)
ACTIVE(divides(X1, X2)) → ACTIVE(X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(divides(X1, X2)) → ACTIVE(X1)
ACTIVE(filter(X1, X2)) → ACTIVE(X2)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(filter(X1, X2)) → ACTIVE(X1)
ACTIVE(divides(X1, X2)) → ACTIVE(X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(divides(X1, X2)) → ACTIVE(X1)
ACTIVE(filter(X1, X2)) → ACTIVE(X2)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.

ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(from(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
sieve(x1)  =  sieve(x1)
head(x1)  =  head(x1)
filter(x1, x2)  =  filter(x1, x2)
divides(x1, x2)  =  divides(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
if(x1, x2, x3)  =  x1
from(x1)  =  x1
s(x1)  =  s(x1)
tail(x1)  =  tail(x1)

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
filter2: multiset
sieve1: [1]
s1: multiset
head1: multiset
divides2: multiset
tail1: multiset
cons2: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(from(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.

ACTIVE(from(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
if(x1, x2, x3)  =  if(x1, x2, x3)
from(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
if3 > ACTIVE1

Status:
if3: multiset
ACTIVE1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(from(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(from(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
from(x1)  =  from(x1)

Recursive path order with status [2].
Quasi-Precedence:
[ACTIVE1, from1]

Status:
from1: multiset
ACTIVE1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.